ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
B. L. Cohen, H. N. Jow
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 381-388
Technical Paper | Radioactive Waste | doi.org/10.13182/NT78-A32122
Articles are hosted by Taylor and Francis Online.
The hazards from buried low-level radioactive waste are generically evaluated under conservative assumptions. It is assumed that transport mechanisms disperse the material randomly through the soil at an early time, thus bypassing all questions of transport through soil, hydrology, holdup processes, etc. in conventional evaluations. The transfer rate from soil to human ingestion is taken to be equal to that rate for naturally occurring isotopes of the same element, obtained from the daily ingestion intakes of Reference Man and geochemical abundances in sediments. Data are converted into the expected number of cancers by use of the BEIR report. The inhalation pathway is treated by assuming the composition of airborne dust to be the same as that of the soil, including the randomly dispersed radioactive material. The effects of a possible release into rivers are estimated by assuming that the probability of radioactive material getting into drinking water is equal to that for other materials in rivers. When the results are applied to the inventory at the Maxey Flats burial ground and reasonable assumptions are made about poorly identified materials, it is found that the total number of eventual cancers expected over the next 10 million years is less than one.