ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. L. Cohen, H. N. Jow
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 381-388
Technical Paper | Radioactive Waste | doi.org/10.13182/NT78-A32122
Articles are hosted by Taylor and Francis Online.
The hazards from buried low-level radioactive waste are generically evaluated under conservative assumptions. It is assumed that transport mechanisms disperse the material randomly through the soil at an early time, thus bypassing all questions of transport through soil, hydrology, holdup processes, etc. in conventional evaluations. The transfer rate from soil to human ingestion is taken to be equal to that rate for naturally occurring isotopes of the same element, obtained from the daily ingestion intakes of Reference Man and geochemical abundances in sediments. Data are converted into the expected number of cancers by use of the BEIR report. The inhalation pathway is treated by assuming the composition of airborne dust to be the same as that of the soil, including the randomly dispersed radioactive material. The effects of a possible release into rivers are estimated by assuming that the probability of radioactive material getting into drinking water is equal to that for other materials in rivers. When the results are applied to the inventory at the Maxey Flats burial ground and reasonable assumptions are made about poorly identified materials, it is found that the total number of eventual cancers expected over the next 10 million years is less than one.