ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. N. Rankin, J. A. Kelley
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 373-380
Technical Paper | Radioactive Waste | doi.org/10.13182/NT78-A32121
Articles are hosted by Taylor and Francis Online.
Metal oxide precipitates (primarily iron oxide compounds) will form in the glass matrix of some compositions of vitrified nuclear waste, during cooling of the melt, whenever solubility limits are exceeded. These precipitates, containing part of the cesium and strontium radionuclides from the waste, are more resistant to leaching by water than the as-cast glass matrix. Some of the glass matrix compositions devitrify during heating for 1 month at 600°C with the formation of equal amounts of NaAlSiO4 (nepheline or carnegieite) and (Ca, Mn) (Mg, Fe, Mn) Si2O6, plus a small amount of Ca4Fe14O25. The leachability of devitrified glass can be up to 100 times greater than the leachability of as-cast glass. The appearance and structure of the metal oxide precipitates are unaffected by the temperature conditions that caused devitrification of the glass matrix. The metal oxide precipitate particles are less leachable in water than any of the phases in the devitrified matrix.