ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. A. Bauer, L. M. Lowry
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 359-372
Technical Paper | Fuel | doi.org/10.13182/NT78-A32120
Articles are hosted by Taylor and Francis Online.
Studies of the tensile properties of Zircaloy-4 spent fuel cladding and their change with both isothermal and transient annealing have been conducted. The cladding was obtained from spent fuel rods irradiated to a maximum fuel burnup of 30 MWd/kg in the Carolina Power and Light H.B. Robinson power reactor. The yield and ultimate strengths of the as-received material decreased linearly with temperature from room temperature to 427°C (800°F). Uniform elongation was unaffected by temperature over the same range, while total elongation increased sharply between 329 and 371°C (625 and 700°F). At 482°C (900°F), properties reflected annealing that occurred during the test. The tensile properties at 371°C (700°F) were found to be strain rate dependent. The strength properties increased with an increase in strain rate, while the total elongation decreased. Uniform elongation exhibited no effect of strain rate. Evidence of dislocation channeling was observed. When the spent fuel cladding was annealed, ra diation anneal hardening was noted during early stages in the annealing process. Annealing of irradiation-induced strengthening occurred rapidly at temperatures above 538°C (1000°F) under isothermal conditions and below 704°C (1300°F) under transient annealing conditions for heating rates of 28°C (50°F)/s or less. Ductility increases lagged the strength changes during annealing. A ductility minimum, as measured by total elongation, is not reflected in reduction-of-area measurements. The annealing behavior of cold-worked Zircaloy cladding was found to be significantly different from that of the irradiated material. Annealing was accompanied by a change in the isotropy of deformation as determined from tube wall and diameter measurements. The as-irradiated cladding exhibited essentially isotropic reductions, as opposed to the anisotropic reductions measured for both annealed cladding and unirradiated Zircaloy tubing.