ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Staffan Jacobsson, Ane Håkansson, Peter Jansson, Anders Bäcklin
Nuclear Technology | Volume 135 | Number 2 | August 2001 | Pages 146-153
Technical Paper | Enrichment | doi.org/10.13182/NT01-A3212
Articles are hosted by Taylor and Francis Online.
A tomographic method for verification of the integrity of used light water reactor fuel has been experimentally investigated. The method utilizes emitted gamma rays from fission products in the fuel rods. The radiation field is recorded in a large number of positions relative to the assembly, whereby the source distribution is reconstructed using a special-purpose reconstruction code.An 8 × 8 boiling water reactor fuel assembly has been measured at the Swedish interim storage (CLAB), using installed gamma-scanning equipment modified for the purpose of tomography. The equipment allows the mapping of the radiation field around a fuel assembly with the aid of a germanium detector fitted with a collimator with a vertical slit. Two gamma-ray energies were recorded: 662 keV (137Cs) and 1274 keV (154Eu). The intensities measured in 2520 detector positions were used as input for the tomographic reconstruction code. The results agreed very well with simulations and significantly revealed a position containing a water channel in the central part of the assembly.