ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Charles Madic, Gerard Koehly
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 323-340
Technical Paper | Chemical Processing | doi.org/10.13182/NT78-A32117
Articles are hosted by Taylor and Francis Online.
The addition of pelargonic, capric, α-bromocapric, α-fluorocapric, and 3-fluorobenzoic acids to organic trilaurylammonium nitrate solutions significantly modifies the extraction of U(VI), Np(IV), and Pu(IV). Antagonism appears at strong nitric acidities, while enhancement of the extraction of U(VI) and Pu(IV) is observed at weak acidities. The antagonism observed is due to the formation of addition compounds between trilaurylammonium nitrate (R3NHNO3) and carboxylic acids (HA) = for pelargonic and capric acids, and for α-bromocapric, α-fluorocapric, and 3-fluorobenzoic acids. Extraction of UO22+, Am3+, Th4+, Np4+, and Pu4+ by capric, α-bromocapric, and 3-fluorobenzoic acids showed that the extractive power of these carboxylic acids is inadequate for the observation of extraction enhancement. The study of the organic phase by the measurement of nitric acid displacement and by dielectric method shows that trilaurylamine and carboxylic acids react to give the compounds (pelargonic and capric acids) and (α-bromocapric and 3-fluorobenzoic acids). The formation of trilaurylammonium carboxylates is responsible for extraction enhancement. Thus, in the case of U(VI), the compounds formed in the organic phase are (HA = capric acid) and (HA = α-bromocapric and 3-fluorobenzoic acids). The antagonisms observed were successfully exploited to resolve certain problems: