ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
N. Prasad Kadambi, Roger W. Tilbrook
Nuclear Technology | Volume 41 | Number 3 | December 1978 | Pages 276-282
Technical Paper | Reactor | doi.org/10.13182/NT78-A32113
Articles are hosted by Taylor and Francis Online.
Boiling initiation in a liquid-metal fast breeder reactor (LMFBR) has in the past been assumed to lead inevitably to the potential for loss of coolable geometry. To ensure conservatism, it was necessary to preclude boiling under all accident conditions. Limited boiling in the radial blanket of the Clinch River Breeder Reactor due to a hypothetical major leak in the primary heat transport system is not likely to lead to assembly-wide dryout and cladding melting. A series of scoping calculations based on applicable physical processes has shown that (a) boiling is likely to be limited to only six subchannels, (b) flow reversal is unlikely, (c) there are ample heat sinks for condensation of sodium vapor, (d) film dryout is unlikely, and (e) cladding melting is unlikely. The consequences listed are of continuously decreasing likelihood, hence providing confidence that coolable geometry is not threatened by limited boiling in the radial blanket. This analysis was performed for a conventional LMFBR core arrangement.