ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Meyer Pobereskin, Kenneth D. Kok, William J. Madia
Nuclear Technology | Volume 41 | Number 2 | December 1978 | Pages 149-167
Technical Paper | Extraction of Energy From Nuclear Fuels Without Reprocessing to Separate Plutonium / Fuel Cycle | doi.org/10.13182/NT78-A32101
Articles are hosted by Taylor and Francis Online.
The technical feasibility of a coprocessing concept involving recovery of all the actinides in the spent fuel as a product group has been analyzed. It has been shown that this can be accomplished by a simple modification of the Purex process. The recovered actinide product group can be reconstituted as a fuel for recycle in either light water reactors (LWRs) or liquid-metal fast breeder reactors (LMFBRs), either by addition of moderately enriched uranium for the LWR case or by controlled partial partitioning of uranium in the LMFBR case. Partial partitioning of uranium from a uranium-plutonium extract (that may contain other transuranics, especially neptunium) can be carried out under Purex process conditions that preclude separation of plutonium. A steady-state fuel composition is approached in eight cycles (40 yr) for the LWRs and five cycles (20 yr) for the LMFBRs. Potential for proliferation can be greatly reduced for subnational diversion since the plutonium is not separated from its actinide homologs, nor is the recovered actinide fuel fully decontaminated from fission products. The possibility of proliferation by national diversion can be impeded. Recycle of the actinides reduces, via transmutation, the cumulative amount of actinides produced, defers the bulk of the actinide waste disposal to the end of the useful fuel lifetime, and ameliorates the high-level waste management problem.