ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. T. Santoro, J. S. Tang, R. G. Alsmiller, Jr., J. M. Barnes
Nuclear Technology | Volume 37 | Number 1 | January 1978 | Pages 65-72
Technical Paper | Shielding | doi.org/10.13182/NT78-A32092
Articles are hosted by Taylor and Francis Online.
Received May 10, 1977 Accepted for Publication September 7, 1977 Adjoint Monte Carlo calculations have been carried out using the three-dimensional radiation transport code, MORSE, to estimate the nuclear heating and radiation damage in the toroidal field (TF) coils adjacent to a 28- × 68-cm2 rectangular neutral beam injector duct that passes through the blanket and shield of a deuterium-tritium (D-T) burning tokamak reactor. The plasma region, blanket, shield, and TF coils were represented in cylindrical geometry using the same dimensions and compositions as those of the Experimental Power Reactor. The radiation transport was accomplished using coupled 35-group neutron, 21-group gamma-ray cross sections obtained by collapsing the DLC-37 cross-section library. Nuclear heating rates were obtained using fluence-to-kerma factors generated by the computer codes MACK and SMUG, and radiation damage rates were calculated using damage response functions generated by the computer code RECOIL. The presence of the neutral beam injector duct leads to increases in the nuclear heating rates in the TF coils ranging from a factor of 3 to a factor of 196, depending on the location. Increases in the radiation damage also result in the TF coils. The atomic displacement rates increase by factors of 2 to 138 and the hydrogen and helium gas production rates increase from factors of 11 to 7600 and from 15 to 9700, respectively.