ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. T. Santoro, J. S. Tang, R. G. Alsmiller, Jr., J. M. Barnes
Nuclear Technology | Volume 37 | Number 1 | January 1978 | Pages 65-72
Technical Paper | Shielding | doi.org/10.13182/NT78-A32092
Articles are hosted by Taylor and Francis Online.
Received May 10, 1977 Accepted for Publication September 7, 1977 Adjoint Monte Carlo calculations have been carried out using the three-dimensional radiation transport code, MORSE, to estimate the nuclear heating and radiation damage in the toroidal field (TF) coils adjacent to a 28- × 68-cm2 rectangular neutral beam injector duct that passes through the blanket and shield of a deuterium-tritium (D-T) burning tokamak reactor. The plasma region, blanket, shield, and TF coils were represented in cylindrical geometry using the same dimensions and compositions as those of the Experimental Power Reactor. The radiation transport was accomplished using coupled 35-group neutron, 21-group gamma-ray cross sections obtained by collapsing the DLC-37 cross-section library. Nuclear heating rates were obtained using fluence-to-kerma factors generated by the computer codes MACK and SMUG, and radiation damage rates were calculated using damage response functions generated by the computer code RECOIL. The presence of the neutral beam injector duct leads to increases in the nuclear heating rates in the TF coils ranging from a factor of 3 to a factor of 196, depending on the location. Increases in the radiation damage also result in the TF coils. The atomic displacement rates increase by factors of 2 to 138 and the hydrogen and helium gas production rates increase from factors of 11 to 7600 and from 15 to 9700, respectively.