ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
F. L. Leverenz, Jr., A. A. Garcia, J. E. Kelly
Nuclear Technology | Volume 37 | Number 1 | January 1978 | Pages 5-12
Technical Paper | Reactor | doi.org/10.13182/NT78-A32085
Articles are hosted by Taylor and Francis Online.
Received February 11, 1977 Accepted for Publication September 7, 1977 One of the important findings of the Reactor Safety Study (RSS) was the identification of the risk due to an interfacing system loss-of-coolant accident (LOCA), i.e., failure of interfaces between the high-pressure primary system and the low-pressure injection system (LPIS). Because equivalent interfaces exist in all pressurized water reactors (although not necessarily with the LPIS), the U.S. Nuclear Regulatory Commission (NRC) has included in its Standard Review Plan three equally acceptable designs intended to decrease the risk due to potential interface failures by decreasing the probability of an interfacing system LOCA. The present analysis of the RSS system configuration is in general agreement with the RSS results; however, the RSS presented a linearized estimate of the exact result, such that the probability of occurrence is overestimated from 0 to 5 yr of plant life and underestimated for plant life beyond 5 yr. In addition, this analysis shows that the NRC design options are not probabilistically equivalent; probabilistically, these options vary by four orders of magnitude, and one option could be implemented in such a way as to yield a probability of occurrence greater than the RSS evaluated design. Finally, as a demonstration of the power inherent in the probabilistic methods, the analysis itself reveals the dominate system failure (gross check valve leaks) leading to a limiting design that eliminates this failure mode and reduces the probability to an insignificant level