ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
F. L. Leverenz, Jr., A. A. Garcia, J. E. Kelly
Nuclear Technology | Volume 37 | Number 1 | January 1978 | Pages 5-12
Technical Paper | Reactor | doi.org/10.13182/NT78-A32085
Articles are hosted by Taylor and Francis Online.
Received February 11, 1977 Accepted for Publication September 7, 1977 One of the important findings of the Reactor Safety Study (RSS) was the identification of the risk due to an interfacing system loss-of-coolant accident (LOCA), i.e., failure of interfaces between the high-pressure primary system and the low-pressure injection system (LPIS). Because equivalent interfaces exist in all pressurized water reactors (although not necessarily with the LPIS), the U.S. Nuclear Regulatory Commission (NRC) has included in its Standard Review Plan three equally acceptable designs intended to decrease the risk due to potential interface failures by decreasing the probability of an interfacing system LOCA. The present analysis of the RSS system configuration is in general agreement with the RSS results; however, the RSS presented a linearized estimate of the exact result, such that the probability of occurrence is overestimated from 0 to 5 yr of plant life and underestimated for plant life beyond 5 yr. In addition, this analysis shows that the NRC design options are not probabilistically equivalent; probabilistically, these options vary by four orders of magnitude, and one option could be implemented in such a way as to yield a probability of occurrence greater than the RSS evaluated design. Finally, as a demonstration of the power inherent in the probabilistic methods, the analysis itself reveals the dominate system failure (gross check valve leaks) leading to a limiting design that eliminates this failure mode and reduces the probability to an insignificant level