ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Michael F. Simpson, K. Michael Goff, Stephen G. Johnson, Kenneth J. Bateman, Terry J. Battisti, Karen L. Toews, Steven M. Frank, Tanya L. Moschetti, Tom P. O'Holleran, Wharton Sinkler
Nuclear Technology | Volume 134 | Number 3 | June 2001 | Pages 263-277
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT01-A3200
Articles are hosted by Taylor and Francis Online.
The electrometallurgical treatment (EMT) process has been designed and developed for stabilizing sodium-bonded, metallic fuel into two high-level waste forms. This process has recently been successfully demonstrated with irradiated EBR-II fuel at Argonne National Laboratory-West. Part of the EMT process is to immobilize fission-product-bearing waste salt, which results from electrorefining, in a ceramic waste form - a glass-bonded sodalite. The sodalite is formed by hot isostatically pressing salt-loaded zeolite at temperatures up to 850°C and pressures up to 100 MPa. The specific unit operations that comprise ceramic waste production include steps for salt grinding, zeolite drying, blending salt and zeolite and glass frit in a v-blender, and consolidating the powders in a hot isostatic press. The results of testing these unit operations with irradiated salt from the EMT demonstration are summarized and include some preliminary characterization of the final irradiated ceramic waste form created by this process.