ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. T. Santoro, V. C. Baker, J. M. Barnes
Nuclear Technology | Volume 37 | Number 3 | March 1978 | Pages 274-295
Technical paper | Reactor | doi.org/10.13182/NT78-A31995
Articles are hosted by Taylor and Francis Online.
One-dimensional neutronic and photonic calculations have been carried out using the discrete-ordinates code ANISN to compare the nuclear performance of blanket and shield designs proposed for use in the Tokamak Experimental Power Reactor. The radiation transport was accomplished using cross-section data from the DLC-37 library (ENDF/B-IV). Nuclear heating and radiation damage rates were estimated using the latest available nuclear response functions. The nuclear analysis was performed for both nonbreeding and tritium-breeding blanket modules to compare the spatial variations of the radiation flux and energy distributions, nuclear heating, radiation damage, and tritium breeding. The nonbreeding blanket modules that utilize potassium plus Type 316 stainless steel or potassium only as the neutron and gamma-ray energy absorbing medium, and breeding blanket modules that use natural lithium as the fertile material were also evaluated as a function of the first wall cooling scheme.