ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mario D. Carelli
Nuclear Technology | Volume 37 | Number 3 | March 1978 | Pages 261-273
Technical paper | Reactor | doi.org/10.13182/NT78-A31994
Articles are hosted by Taylor and Francis Online.
Assembly exit thermocouples are chosen for the Clinch River Breeder Reactor Plant as the instrumentation providing the most useful information at the minimum cost. One thermocouple is positioned at the exit of each fuel assembly and at approximately half of the radial blanket assemblies. The number of thermocouples, their positions, and characteristics are selected to satisfy the reactor control, surveillance, and design verification functions. The various uncertainties affecting the assemblies’ coolant exit temperature measurements are quantitatively defined to correlate the measured temperature with the fuel rod design cladding temperature, which is the major parameter in determining the allowable fuel rod burn-up and lifetime. Thus, appropriate factoring of thermocouple measurements allows the fuel assembly burnup to be increased quite significantly, with related cost savings of hundreds of millions of dollars. Due to the tremendous economic leverage on operating costs over the plant lifetime, close attention to proper instrumentation should be paid in the design of future commercial liquid-metal fast breeder reactors.