ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Soo-Youl Oh, Jonghwa Chang, Jong-Kyun Park, Manuel Carrasco
Nuclear Technology | Volume 134 | Number 2 | May 2001 | Pages 196-207
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT01-A3195
Articles are hosted by Taylor and Francis Online.
New core control logic known as Mode K has been developed to enhance the load-follow operation (LFO) capability of a pressurized water reactor. The Mode K reactor regulating system, which actuates control bank movements, consists of two closed control loops, one for the coolant average temperature control and the other for the axial power shape control. Via its peculiar logic for selecting the control banks to be driven, the Mode K controls the coolant average temperature and axial power shape simultaneously and automatically within their allowed operating limits. In this way, the Mode K significantly reduces the operator burden associated with conventional manual power shape control during LFOs. A simple and flexible soluble boron scenario complements the Mode K logic and contributes toward reducing operational burden by its simplicity. The Mode K logic has been implanted in the Korean Next-Generation Reactor, a 1300-MW(electric) class evolutionary nuclear power plant under development in Korea, and various kinds of LFOs including frequency control have been simulated using the Framatome engineering simulator SAPHIR. The simulation results show reasonable core control performance of the Mode K as well as proper behaviors of other major nuclear steam supply system components such as the pressurizer and steam generator.