ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Peter S. Martini, Ronald J. Onega
Nuclear Technology | Volume 36 | Number 3 | December 1977 | Pages 285-293
Technical Paper | Reactor | doi.org/10.13182/NT77-A31942
Articles are hosted by Taylor and Francis Online.
The accumulation of impurities in a controlled thermonuclear reactor makes steady-state operation unlikely. The energy output during the burn phase will depend on the ion temperatures and densities. A dynamic model of the burn cycle of a tokamak is used to investigate the ion densities and temperatures as a function of time. The total energy output per cycle is investigated as a function of the ion feed rates, plasma current, and the divertor efficiency. The point-kinetics model of the plasma incorporates ion and energy balance equations and explicitly accounts for the impurity ion buildup. The D-D, D-T, and D-3He reactions are all considered in this model. The energy carried off by the neutrons in the D-D and D-T reactions is lost from the plasma. Impurities enter the plasma as a result of wall interactions with escaping ions and neutrons. The trapped-ion mode is used for calculating the confinement times. An equilibrium state vector was obtained using currently projected operating parameters. The total energy density for a burn cycle was found to be a monotonically increasing function of the source rates and the plasma current. The energy density was not substantially increased until the divertor efficiency was greater than ∼60% when the other parameters were held constant.