ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. W. Ostensen, W. F. Murphy, B. J. Wrona, L. W. Deitrich, J. C. Florek
Nuclear Technology | Volume 36 | Number 2 | December 1977 | Pages 200-214
Technical Paper | International Safeguard / Reactor | doi.org/10.13182/NT77-A31927
Articles are hosted by Taylor and Francis Online.
In a transient-undercooling accident in a liquid-metal fast breeder reactor with a small sodium void coefficient, steel cladding melts prior to disruption of the oxide fuel pellets. If molten steel could wet the fuel and penetrate into the interior of the fuel pin through the surface cracks, steel vapor pressure could cause an early breakup and possibly a dispersal of the fuel. The wetting and capillary properties of molten steel in contact with solid oxide fuel have been examined. Based on available indirect in-pile and out-of-pile experimental results, the known surface properties of steel and UO2, the behavior of similar materials, and direct experiments on steel-UO2 wetting properties, it is concluded that in an accident situation, molten Type 316 stainless steel will not wet oxide fuel at temperatures below the point of disruption of the fuel. Steel intrusions in the fuel will have no significant impact on the accident sequence.