ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
R. W. Ostensen, W. F. Murphy, B. J. Wrona, L. W. Deitrich, J. C. Florek
Nuclear Technology | Volume 36 | Number 2 | December 1977 | Pages 200-214
Technical Paper | International Safeguard / Reactor | doi.org/10.13182/NT77-A31927
Articles are hosted by Taylor and Francis Online.
In a transient-undercooling accident in a liquid-metal fast breeder reactor with a small sodium void coefficient, steel cladding melts prior to disruption of the oxide fuel pellets. If molten steel could wet the fuel and penetrate into the interior of the fuel pin through the surface cracks, steel vapor pressure could cause an early breakup and possibly a dispersal of the fuel. The wetting and capillary properties of molten steel in contact with solid oxide fuel have been examined. Based on available indirect in-pile and out-of-pile experimental results, the known surface properties of steel and UO2, the behavior of similar materials, and direct experiments on steel-UO2 wetting properties, it is concluded that in an accident situation, molten Type 316 stainless steel will not wet oxide fuel at temperatures below the point of disruption of the fuel. Steel intrusions in the fuel will have no significant impact on the accident sequence.