ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Werner Katscher
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 557-563
Advanced and Improved Fuel and Application | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31916
Articles are hosted by Taylor and Francis Online.
Direct cooling of coated particles by water is a possibility for significantly increasing the power density in the core of pressurized water reactors beyond that common at present. The problems of hydrodynamics, thermodynamics, and production technology involved have been examined and found to be tractable. By means of burnout experiments using induction heating, it has been demonstrated that it is possible to safely cool packed beds of small spheres directly by water, even at the low flow rates that must be specified to limit the pressure drop to values representative of present high-power-density cores. Electron beam drilling was shown to be an adequate method for producing the perforated support structure for the particle beds. Clarification of problems with respect to neutron physics, cost-effectiveness, or specific safety engineering will require further investigation.