ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C. M. Hollabaugh, L. A. Wahman, R. D. Reiswig, R. W. White, P. Wagner
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 527-535
Advanced and Improved Fuel and Application | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31913
Articles are hosted by Taylor and Francis Online.
The experimentally determined quantitative effects of varying gas mixture composition on the properties of the zirconium carbide (ZrC) deposited on microspheres in a fluidized bed were a decrease in metallic appearance of the ZrC coat, with an increase in the ratio of the hydrocarbon gas to the ZrCl4 and co-deposition of carbon at high hydrocarbon gas concentrations. Increasing the H2 concentration inhibited these effects and permitted the ZrC to be deposited at higher hydrocarbon gas concentrations. Deposits of pure sub-stoichiometric ZrC coats were controllable over a limited concentration range. The ZrC was deposited in a fluidized bed of ThO2 particles at a maximum temperature of ∼1650 K, using gas mixtures of H2, argon, ZrCl4, and CH4 or C3H6. The ZrCl4 flow was controlled using a powder feeder.