ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
K. Röllig
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 516-523
Fission Product Release | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31912
Articles are hosted by Taylor and Francis Online.
The release of the rare fission gases, krypton and xenon, from a high-temperature reactor pebble-bed core is predominantly determined by the heavy-metal contamination of the matrix material during manufacture. In the case of the Thorium High-Temperature Reactor prototype fuel, particles with failed coatings contribute <10% to the total core release of the xenon and krypton isotopes with the exception of long-lived 85Kr. In a series of irradiation experiments with spherical fuel elements, a linear relation between the gas release and the contamination of the matrix material was established. At mean fuel temperatures of 700°C (973 K), only ∼1% of the 85mKr and 133Xe produced by fuel contamination is released. The experimental data for the steady-state release of 13 krypton and xenon isotopes can be explained by describing the graphitic matrix material as a two-component. system. Component 1 is attributed to the graphitic grains of the raw material, and component 2 to the material between the grains, such as the amorphous, nongraphitized binder coke. The total contamination-induced release from the fuel elements is given by the retention characteristics of the two components working in parallel, followed in series by the gas-phase transport through the interconnected porosity of the fuel element structure. As a consequence of this model, the apparent activation energy for the steady-state release depends on the half-lives of the isotopes of the same species yielding, e.g., 5 kcal/mole (21 kJ/mole) for 140Xe and 9 kcal/mole (38 kJ/mole) for 138Xe.