ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Röllig
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 516-523
Fission Product Release | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31912
Articles are hosted by Taylor and Francis Online.
The release of the rare fission gases, krypton and xenon, from a high-temperature reactor pebble-bed core is predominantly determined by the heavy-metal contamination of the matrix material during manufacture. In the case of the Thorium High-Temperature Reactor prototype fuel, particles with failed coatings contribute <10% to the total core release of the xenon and krypton isotopes with the exception of long-lived 85Kr. In a series of irradiation experiments with spherical fuel elements, a linear relation between the gas release and the contamination of the matrix material was established. At mean fuel temperatures of 700°C (973 K), only ∼1% of the 85mKr and 133Xe produced by fuel contamination is released. The experimental data for the steady-state release of 13 krypton and xenon isotopes can be explained by describing the graphitic matrix material as a two-component. system. Component 1 is attributed to the graphitic grains of the raw material, and component 2 to the material between the grains, such as the amorphous, nongraphitized binder coke. The total contamination-induced release from the fuel elements is given by the retention characteristics of the two components working in parallel, followed in series by the gas-phase transport through the interconnected porosity of the fuel element structure. As a consequence of this model, the apparent activation energy for the steady-state release depends on the half-lives of the isotopes of the same species yielding, e.g., 5 kcal/mole (21 kJ/mole) for 140Xe and 9 kcal/mole (38 kJ/mole) for 138Xe.