ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
C. L. Smith
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 403-412
Performance and Performance Modeling | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31901
Articles are hosted by Taylor and Francis Online.
Biso-coated ThO2 fertile fuel kernels will migrate up the thermal gradients imposed across coated particles during high-temperature gas-cooled reactor (HTGR) operation. Thorium dioxide kernel migration has been studied as a function of temperature (1290 to 1705°C) (1563 to 1978 K) and ThO2 kernel burnup (0.9 to 5.8% FIMA) in out-of-pile postirradiation thermal gradient heating experiments. The studies were conducted to obtain descriptions of migration rates that will be used in core design studies to evaluate the impact of ThO2 migration on fertile fuel performance in an operating HTGR and to define characteristics needed by any comprehensive model describing ThO2 kernel migration. The kinetics data generated in these postirradiation studies are consistent with in-pile data collected by investigators at Oak Ridge National Laboratory, which supports use of the more precise postirradiation heating results in HTGR core design studies. Observations of intergranular carbon deposits on the cool side of migrating kernels support the assumption that the kinetics of kernel migration are controlled by solid-state diffusion within irradiated ThO2 kernels. The migration is characterized by a period of no migration (incubation period), followed by migration at the equilibrium rate for ThO2. The incubation period decreases with increasing temperature and kernel burnup. The improved understanding of the kinetics of ThO2 kernel migration provided by this work will contribute to an optimization of HTGR core design and an increased confidence in fuel performance predictions.