ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
R. A. Bradley, B. A. Thiele
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 353-358
Performance and Performance Modeling | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31895
Articles are hosted by Taylor and Francis Online.
Fuel for the high-temperature gas-cooled reactor is in the form of microspheres surrounded by high-density impermeable coatings to retain fission products. Recent irradiation tests indicated that the high-density carbon layer of Biso coatings may become permeable to krypton, xenon, and CO during irradiation. In-reactor gas release measurements showed the particles were impermeable to fission gases at the beginning of the testy but released significant quantities of krypton and xenon after a period of irradiation. Although postirradiation examination by visual, ceramographic, and radiographic techniques indicated that all particles were intact, gas content measurement showed that particles receiving a significant fast fluence contained only a small fraction of the expected krypton and xenon, while those receiving low fluence retained almost all the fission gas. The results of these experiments indicate that the permeability of the coatings is due to fast-neutron-induced structural changes in the pyrocarbon.