ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
R. A. Bradley, B. A. Thiele
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 353-358
Performance and Performance Modeling | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31895
Articles are hosted by Taylor and Francis Online.
Fuel for the high-temperature gas-cooled reactor is in the form of microspheres surrounded by high-density impermeable coatings to retain fission products. Recent irradiation tests indicated that the high-density carbon layer of Biso coatings may become permeable to krypton, xenon, and CO during irradiation. In-reactor gas release measurements showed the particles were impermeable to fission gases at the beginning of the testy but released significant quantities of krypton and xenon after a period of irradiation. Although postirradiation examination by visual, ceramographic, and radiographic techniques indicated that all particles were intact, gas content measurement showed that particles receiving a significant fast fluence contained only a small fraction of the expected krypton and xenon, while those receiving low fluence retained almost all the fission gas. The results of these experiments indicate that the permeability of the coatings is due to fast-neutron-induced structural changes in the pyrocarbon.