ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Vistra’s Perry nuclear plant approved for license renewal
Texas-based Vistra Corporation has announced that its license renewal application for the Perry nuclear power plant was approved by the Nuclear Regulatory Commission. The plant first connected to the grid in 1986 and is still operating under its original 40-year license, which was set to expire next year.
R. L. R. Lefevre, M. S. T. Price
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 263-278
Pyrocarbon | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31886
Articles are hosted by Taylor and Francis Online.
The coating of nuclear fuel particles with pyrolytic carbon derived from a hydrocarbon gas is a complex process, and, until recently, although adequate behavior in service has been demonstrated, the methods used to obtain a particular product have been largely empirical. A concerted effort was made to close the loop: manufacture-quality-performance. A model of the decomposition process postulated the formation and growth of nuclei into agglomerates that are captured by the fuel particles. The evolution of the model involved many simplifications, and to reduce the number of variables involved, standardized operating conditions were assumed. The most important of these for comparative studies is the concept of operating at a constant reaction zone temperature. When this is done, many of the anomalies previously ascribed to the effect of different source gases are removed. An experimental program has been carried out to test the model, and excellent correlations have been found between the predicted and actual size of agglomerates that can be observed in the coating structure. The agglomerate size has also been correlated with coating failure. With the aid of the model, similar deposits have been made from quite different source gases. A survey of the failure modes of coated particle fuel acts as an aid to deducing, in the light of the deposition model, the method of achieving a satisfactory quality assurance program for the structure of coatings on nuclear fuel particles.