ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Germany’s Unterweser completes removal of steam generators
All four steam generators at Germany’s Unterweser nuclear power plant have been removed from the reactor building, plant owner PreussenElektra has announced. The single-unit pressurized water reactor was shut down in 2011 as part of Germany’s decision to phase out nuclear energy. Decommissioning and dismantlement of the reactor began soon after PreussenElektra was granted a permit for the work in February 2018.
R. L. R. Lefevre, M. S. T. Price
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 263-278
Pyrocarbon | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31886
Articles are hosted by Taylor and Francis Online.
The coating of nuclear fuel particles with pyrolytic carbon derived from a hydrocarbon gas is a complex process, and, until recently, although adequate behavior in service has been demonstrated, the methods used to obtain a particular product have been largely empirical. A concerted effort was made to close the loop: manufacture-quality-performance. A model of the decomposition process postulated the formation and growth of nuclei into agglomerates that are captured by the fuel particles. The evolution of the model involved many simplifications, and to reduce the number of variables involved, standardized operating conditions were assumed. The most important of these for comparative studies is the concept of operating at a constant reaction zone temperature. When this is done, many of the anomalies previously ascribed to the effect of different source gases are removed. An experimental program has been carried out to test the model, and excellent correlations have been found between the predicted and actual size of agglomerates that can be observed in the coating structure. The agglomerate size has also been correlated with coating failure. With the aid of the model, similar deposits have been made from quite different source gases. A survey of the failure modes of coated particle fuel acts as an aid to deducing, in the light of the deposition model, the method of achieving a satisfactory quality assurance program for the structure of coatings on nuclear fuel particles.