ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
J. K. Fink, J. J. Heiberger, R. Kumar, R. A. Blomquist
Nuclear Technology | Volume 35 | Number 3 | October 1977 | Pages 656-662
Technical Paper | Material | doi.org/10.13182/NT77-A31874
Articles are hosted by Taylor and Francis Online.
As part of a program at Argonne National Laboratory (ANL) to investigate the compatibility of high-temperature sodium with materials being considered for core retention systems in liquid-metal fast breeder reactors, various commercial refractories and samples of reactor control materials were exposed to static sodium at 850°C for 5 h. The refractories tested were samples of magnesia, alumina, zirconia, mixed ceramic oxides, and graphite; the reactor control materials were boron carbide and tantalum. Samples of graphite, zirconia, and the refractories with high alumina or magnesia contents, but with low silica and chromic oxide contents, were found to be compatible with high-temperature sodium. Sample compatibility with sodium decreased with an increase in the silica content of the sample. Samples with large silica content failed completely. These results are in good agreement with results of other experiments, performed at ANL and at the Westinghouse Advanced Reactors Division, in which these materials were exposed to boiling sodium.