ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. Sari
Nuclear Technology | Volume 35 | Number 1 | August 1977 | Pages 145-153
Technical Paper | Fuel | doi.org/10.13182/NT77-A31857
Articles are hosted by Taylor and Francis Online.
Temperature gradients similar to those existing in high-rated MX-type fuel [UC, (U,Pu)C and (U, Pu)C0.9 N0.1] have been obtained by heating cylindrical pellets with an alternating electrical current flowing in the axial direction. The power used and the heat impedance existing between the surface of the pellets and the cladding material is sufficient to produce average temperature gradients on the order of 150 kK/m in temperature regions between 1273 and 2273 K. Preliminary experiments show that under these temperature conditions, important restructuring of the MX-type fuel occurs after a comparatively short time (<40 h). Generally, four structural zones, characterized by a temperature and a temperature gradient, have been observed in cross sections of the heated specimens. In the direction of increasing pellet radius (decreasing temperature), one finds a zone with large rounded pores and large equiaxed grains, a zone where pores and grains are elongated in the direction of the temperature gradient, and next to this, a zone with intergranular pores and equiaxed grains, and, finally, an unrestructured zone at the edge of the pellet. Lenticular pores are not responsible for the fuel restructuring. They appear at temperatures around 1773 K, and their apparent migration rate is lower than that observed in uranium-plutonium oxides. The fuel heated in a thermal gradient also shows a general tendency to sinter at temperatures as low as 1523 K and a tendency to crack. The free volume created by the formation of cracks is independent of the initial density of the fuel. Plutonium enrichment at the open and healed cracks and at the surface of the pellets has been observed.