ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
J. T. A. Roberts, E. Smith, N. Fuhrman, D. Cubicciotti
Nuclear Technology | Volume 35 | Number 1 | August 1977 | Pages 131-144
Technical Paper | Fuel | doi.org/10.13182/NT77-A31856
Articles are hosted by Taylor and Francis Online.
Results of three related projects undertaken to elucidate the mechanism of Zircaloy cladding fracture caused by pellet-cladding interaction (PCI) in water reactor fuel rods are described. A detailed microscopic examination of incipient i.d. cladding defects in some Maine Yankee Core I fuel rods determined that these defects and clad penetrations in related rods were caused by a PCI mechanism that was promoted by chemical species, i.e., stress corrosion cracking (SCC). A consideration of the internal fuel rod chemistry and fission product distribution indicates that one potential agent for SCC of Zircaloy cladding is iodine released from Csl deposited on the i.d. surface and another is cadmium metal. A simple analytical model of crack propagation in Zircaloy cladding based on linear elastic fracture mechanics indicates two possible rate-controlling events, depending on the value of the stress intensification KISCC. If KISCC for irradiated Zircaloy is very low, i.e., on the order of 2.2 to 3.3 MN/m3/2 (2 to 3 ksi ), crack growth is relatively easy, and hence the rate-limiting step must be the nucleation of sharp cracks in the cladding i.d. surface. However, if KISCC for irradiated Zircaloy is relatively large, i.e., ≥11 MN/m3/2 (10 ksi ), a high interfacial friction coefficient, for example, caused by fuel-clad bonding, would be required to propagate the i.d. defect.