ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
T. Shimooke, K. Matsumoto
Nuclear Technology | Volume 35 | Number 1 | August 1977 | Pages 119-130
Technical Paper | Fuel | doi.org/10.13182/NT77-A31855
Articles are hosted by Taylor and Francis Online.
The probability distributions of the peak-clad temperature (PCT) and of the maximum cladding oxidation thickness supposed to occur in the hypothetical loss-of-coolant accidents (LOCAs) for a typical boiling water reactor (BWR) are studied by a computer-simulated experiment, using the computer program MOXY-EM, one of the fuel heatup analysis codes for a BWR. To reduce the numbers of the computer runs, the theory and techniques of the factorial design of experiments are used. We have specially developed the partially orthogonal factorial design, which not only selects the small fraction of all possible runs that correspond to the various input sets, but also produces under this small number of runs the right statistical distributions of the PCT and of the cladding oxidation thickness. The PCT is found statistically to distribute normally, and the maximum cladding oxidation thickness obeys the log-normal distribution in our survey for the LOCAs at a typical BWR.