ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. Shimooke, K. Matsumoto
Nuclear Technology | Volume 35 | Number 1 | August 1977 | Pages 119-130
Technical Paper | Fuel | doi.org/10.13182/NT77-A31855
Articles are hosted by Taylor and Francis Online.
The probability distributions of the peak-clad temperature (PCT) and of the maximum cladding oxidation thickness supposed to occur in the hypothetical loss-of-coolant accidents (LOCAs) for a typical boiling water reactor (BWR) are studied by a computer-simulated experiment, using the computer program MOXY-EM, one of the fuel heatup analysis codes for a BWR. To reduce the numbers of the computer runs, the theory and techniques of the factorial design of experiments are used. We have specially developed the partially orthogonal factorial design, which not only selects the small fraction of all possible runs that correspond to the various input sets, but also produces under this small number of runs the right statistical distributions of the PCT and of the cladding oxidation thickness. The PCT is found statistically to distribute normally, and the maximum cladding oxidation thickness obeys the log-normal distribution in our survey for the LOCAs at a typical BWR.