ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
J. Woodcock, Per F. Peterson, D. R. Spencer
Nuclear Technology | Volume 134 | Number 1 | April 2001 | Pages 37-48
Technical Paper | NURETH-9 | doi.org/10.13182/NT01-A3184
Articles are hosted by Taylor and Francis Online.
The Westinghouse AP600 containment structure is a steel containment vessel surrounded by a thick concrete shield building. A passive containment cooling system applies gravity-drained water to the outer surface of the steel containment shell to remove heat by evaporation and convection. Mass transfer is the dominant means of containment heat removal on both inner and outer steel shell surfaces. On the inside, condensation on the containment shell dominates heat removal and is influenced by the distribution of steam and noncondensible gases. The AP600 design basis analysis for containment does not rely on fan coolers or sprays to homogenize the internal atmosphere. During the post-blowdown phase of a loss-of-coolant accident (LOCA) transient, mixing due to break momentum may be neglected by assuming momentum to be dissipated within the break compartment, conservatively minimizing source momentum-induced mixing. One or more buoyant plumes will rise from openings in the operating deck, and a wall boundary layer induced by heat and mass transfer to the containment shell will flow downward. Both the plume and wall layer entrain bulk mixture, acting to circulate the bulk mixture. The fluid dynamics leads to a time-averaged vertical gradient of steam concentration. Simple integral entrainment relations have been examined to assess the order of magnitude of vertical steam concentration differences that may occur in the AP600 containment during the long-term LOCA transient.