ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. Garribba, A. Ovi
Nuclear Technology | Volume 34 | Number 1 | June 1977 | Pages 18-37
Technical Paper | Reactor | doi.org/10.13182/NT77-A31826
Articles are hosted by Taylor and Francis Online.
A statistical formulation of utility theory is developed for decision problems concerned with the choice among alternative strategies in electric energy production. Four alternatives are considered: nuclear power, fossil power, solar energy, and conservation policy. Attention is focused on a Public Electric Utility thought of as a rational decision-maker. A framework for decisions is then suggested where the admissible strategies and their possible consequences represent the information available to the decision-maker. Once the objectives of the decision process are assessed, consequences can be quantified in terms of measures of effectiveness. Maximum expected utility is the criterion of choice among alternatives. Steps toward expected values are the evaluation of the multidimensional utility function and the assessment of subjective probabilities for consequences. In this respect, the multiplicative form of the utility function seems less restrictive than the additive form and almost as manageable to implement. Probabilities are expressed through subjective marginal probability density functions given at a discrete number of points. The final stage of the decision model is to establish the value of each strategy. To this scope, expected utilities are computed and scaled. The result is that nuclear power offers the best alternative.