ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
B.-G. Brodda, D. Heinen
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 428-437
Technical Paper | Chemical Processing | doi.org/10.13182/NT77-A31808
Articles are hosted by Taylor and Francis Online.
Radiolysis and hydrolysis of tributylphosphate (TBP) in n-paraffin diluent were investigated under conditions simulating several parameters of the THOREX flowsheet for reprocessing thorium containing spent nuclear fuel. The solvent (30 vol% TBP-n-paraffin) was equilibrated with 0.25 to 3 molar nitric acid, and the organic phase was inspected by gas chromatography. As an acid hydrolysis product, only di-n-butylphosphoric acid (HDBP) was detected in the organic phase. Mono-n-butylphosphoric acid (H2MBP), if formed, would have been extracted into the aqueous phase and, thus, escape detection. The HDBP content of the organic phase changes linearly with its acid content and keeps constant after phase separation. Either hydrolysis does not proceed in the organic phase or it is compensated for by amelioration effects. Radiolysis in pure solvents (30 and 5 vol% TBP-n-paraffin) with doses from 0.5 to 13 Wh·ℓ−1 produces HDBP with G values (TBP-based) of ∼2 and ∼6, slightly decreasing with higher doses. No H2MBP was found. Regarding the analytical detection limit, this corresponds to <2.5% H2MBP formation, relative to HDBP. Radiolysis in solvent (30 vol% TBP-n-paraffin), equilibrated with 0.25 to 3 molar nitric acid at a constant dose of 7 Wh·ℓ−1, leads to a considerably reduced radiolytic fraction of the total HDBP yield with a minimum of ∼0.3 molar nitric acid in the organic phase (2 molar in the aqueous phase). At ∼0.17 molar nitric acid in the organic phase (corresponding to THOREX conditions), radiolytic and hydrolytic fractions are equal. With higher acidities, the hydrolytic fraction preponderates and vice versa. The G values of the radiolytic fraction vary between 0.8 and 1.1. Again, the H2MBP formation was not detected at the same sensitivity level. Irradiating the solvent (30 vol% TBP-n-paraffin), equilibrated with 0.75 molar nitric acid (0.12 molar in the organic phase) with doses from 0.5 to 13 Wh·ℓ−1, leads to a mixture of hydrolytically and radiolytically formed HDBP, the hydrolytic fraction of which raises the total HDBP yield over the radiolytic HDBP yield from acid-free solvents up to doses of ∼3 Wh·ℓ−1. With higher doses, the total yield is kept below the value for the acid-free solvent due to the nitric acid effect. The G values of the radiolytic fraction vary between 0.7 and 1.2. Again, the H2MBP formation could not be detected. It is proposed to denominate TBP degradation product yields according to their origin, hydrolysis or radiolysis (G value), or just by a concentration value in case of mixed origin, valid for the experimental conditions.