ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. E. LaValle, D. A. Costanzo, W. J. Lackey, A. J. Caputo
Nuclear Technology | Volume 33 | Number 3 | May 1977 | Pages 290-295
Technical Paper | Fuel | doi.org/10.13182/NT77-A31790
Articles are hosted by Taylor and Francis Online.
The fuel for the high-temperature gas-cooled reactor consists of uranium and thorium species in the form of microspheres encapsulated in layers of pyrolytic carbon and silicon carbide and bonded into fuel rods. An important characterization of these particles is the fraction in a particular sample or rod that may have defective coatings that would allow the release of gaseous and metallic fission products. In the chlorine leach method for this determination, the fuel exposed by defective coatings is volatilized as the heavy metal chlorides at 1000°C. This method is now adapted for the examination of irradiated fuel rods in a hot cell. It is also extended to chlorinations at 1500°C by induction heating, permitting the rapid examination (2 to 3 h) of unirradiated fuel rods.