ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Kenji Takeshita, Yoshio Nakano
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 338-345
Technical Paper | Reprocessing | doi.org/10.13182/NT01-A3178
Articles are hosted by Taylor and Francis Online.
An adsorption process of iodine using Ag0-loaded adsorbents was studied for the removal of radioactive iodine in the process off-gas from a spent nuclear fuel reprocessing plant. A mathematical model to predict a breakthrough curve of I2 on the adsorbent bed was proposed. This model consists of the mass balance equation of I2 in the adsorbent bed, the mass transfer equation of I2 through the boundary layer surrounding the adsorbent particle, the intraparticle diffusion equation of I2, and the kinetic equation for the gas-solid reaction between I2 and loaded Ag0. Two unknown parameters in the model, the intraparticle diffusivity De and the apparent rate constant for the gas-solid reaction kr were determined simultaneously from the adsorption data measured by a thermogravimetric analyzer. The breakthrough curves predicted by the model using these parameters were in good agreement with the experimental ones. The rate-controlling step was evaluated by the effectiveness factor calculated from the kr value and the concentration gradient of I2 in the adsorbent particles, which was estimated by the model. From these results, the adsorbent structure required to improve the process performance is discussed. The proposed model is available as a calculation tool to support the design of the adsorption process.