ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
J. L. Stakebake, H. N. Robinson
Nuclear Technology | Volume 33 | Number 1 | April 1977 | Pages 30-39
Technical Paper | Reactor | doi.org/10.13182/NT77-A31761
Articles are hosted by Taylor and Francis Online.
The release of PuO2 from plutonium-contaminated burning sodium and liquid sodium under a nitrogen atmosphere has been measured. Also investigated was the release of β-Na4PuO5 from burning sodium. Plutonium concentrations in the initial sodium pool ranged from 13 to 250 ppm. Plutonium dioxide concentrations in the aerosol released from the burning sodium ranged from 5.6 to 1360 ppb. The PuO2 released along with the sodium metal, when the sodium pool was heated in nitrogen at 540°C, varied from 67 to 3632 ppb. The release of β-Na4PuO5 from burning sodium was very small and could only be detected using nuclear track techniques and extended alpha counting. Aerosol particles followed a log-normal particle size distribution. The count mean diameter was 0.48 µm for PuO2 and 0.98 µm for Na2Ox.