ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Felix C. Difilippo, Stephen E. Fisher
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 310-324
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3176
Articles are hosted by Taylor and Francis Online.
Important decisions related to the kind of reactors to be used for the disposition of the surplus weapons-grade plutonium are going to be based on calculations. Benchmarking computational methods in all aspects of the fuel cycle with measured data is then an obvious necessity. Analysis of public domain data reveals that the cycle-2 irradiation in the Quad Cities-1 boiling water reactor is the most recent U.S. destructive examination, involving the irradiation of five mixed-oxide (MOX) assemblies using 80 and 90% fissile Pu, quite close to weapons-grade Pu isotopic. Such measurements are rare, and they might be the only source of information to quantify differences in key neutronics parameters between high-fissile Pu systems and the well-characterized use of reactor-grade Pu. The pin neutronic performances for the UO2 and MOX fuels are compared with assembly-level calculation in which ~20% of the pins are MOX pins surrounded by UO2 pins. For MOX rods, HELIOS models the chains for the isotopes of uranium and plutonium reasonably well when compared with measured data at ~12 000 MWd/tonne. However, indications are that the amounts of heavier actinides are underpredicted. Measurements and calculations of the relative pin power distribution for the last few weeks of the irradiation and the burnup are fairly consistent. The critical effects of the contribution of the 0.296-eV resonance to the production of higher actinides and the destruction of 239Pu are discussed.