ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yue Guan, Fei Li, Mohammad Modarres, David Bessette, Marino Dimarzo
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 269-289
Technical Paper | Reactor Safety | doi.org/10.13182/NT01-A3174
Articles are hosted by Taylor and Francis Online.
This paper presents an application of a thermal-hydraulic and probabilistic assessment (TH-PA) method to the Westinghouse Advanced Passive 600-MW(electric) (AP600) design. The Westinghouse probabilistic risk assessment (PRA) was used for screening probabilistically important scenarios only. Corresponding integrated-behavior-logic diagrams (IBLDs) were constructed, and accident trajectories were developed. Small cold-leg break accidents and direct vessel injection line break accidents were analyzed. Scenarios in which TH phenomena may play a major role, and which have the highest frequency of core uncovery and heatup were identified. Important insights were obtained. Application of this method to the AP600 has shown its value in prioritizing safety issues. Its application to the AP600 has been further ensured by (a) relying on the Westinghouse PRA to model functional/logical relationships of the components/systems, (b) using a peer review approach to validate the most important IBLDs, and (c) comparing accident trajectories with the U.S. Nuclear Regulatory Commission-sponsored AP600 experimental results. While this application has demonstrated effectiveness of the method in accident scenario screening for the AP600, the TH-PA method has broader potential.