ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
John E. Mendel
Nuclear Technology | Volume 32 | Number 1 | January 1977 | Pages 72-87
Technical Paper | Materials in Waste Storage / Radioactive Waste | doi.org/10.13182/NT77-A31739
Articles are hosted by Taylor and Francis Online.
Glass is a good material in which to incorporate high-level radioactive waste (HLW) for permanent storage. HLW, a complex mixture of fission products and actinides, results from the reprocessing of spent power reactor fuel elements to reclaim uranium and plutonium. Processes for making low-temperature waste glasses (1050°C processing temperature) have been developed to the stage that they can be utilized in commercial reprocessing plants in the early 1980’s. A representative low-melting waste glass formulation has been shown, in accelerated tests, to possess satisfactory thermal and radiation stability for many centuries of storage, and indications are that this stability will be maintained for longer times. The waste glass can be melted and stored in Type 304L stainless-steel canisters, although investigations of metals that may have increased high-temperature strength is continuing. A ceramic melting process that will permit manufacture of higher melting HLW glass, if this proves desirable, is also being developed.