ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
John E. Mendel
Nuclear Technology | Volume 32 | Number 1 | January 1977 | Pages 72-87
Technical Paper | Materials in Waste Storage / Radioactive Waste | doi.org/10.13182/NT77-A31739
Articles are hosted by Taylor and Francis Online.
Glass is a good material in which to incorporate high-level radioactive waste (HLW) for permanent storage. HLW, a complex mixture of fission products and actinides, results from the reprocessing of spent power reactor fuel elements to reclaim uranium and plutonium. Processes for making low-temperature waste glasses (1050°C processing temperature) have been developed to the stage that they can be utilized in commercial reprocessing plants in the early 1980’s. A representative low-melting waste glass formulation has been shown, in accelerated tests, to possess satisfactory thermal and radiation stability for many centuries of storage, and indications are that this stability will be maintained for longer times. The waste glass can be melted and stored in Type 304L stainless-steel canisters, although investigations of metals that may have increased high-temperature strength is continuing. A ceramic melting process that will permit manufacture of higher melting HLW glass, if this proves desirable, is also being developed.