ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
L. Green, J. T. Kriese, M. Natelson
Nuclear Technology | Volume 32 | Number 2 | February 1977 | Pages 186-204
Technical Paper | Fuel | doi.org/10.13182/NT77-A31723
Articles are hosted by Taylor and Francis Online.
The reactivity perturbation method has been investigated as a possible technique for the assay of spent fuel rods from a 233UO2-ThO2-fueled core. A hard interrogating spectrum was provided at the center of the ARMF-1 core by two B4C filters of different thickness. Rods up to 267 cm (2.67 m) long were pulled through the core at speeds up to 25 cm/min (4.17 × 10−2 m/s), and the time-integrated reactivity worth was measured. The fuel response of both filters was found to be linear over a wide fuel density range, with good fuel sensitivity. Fission product sensitivities for the two filters, obtained both experimentally and calculationally, were very low and in good agreement with one another. Single-measurement uncertainty was 0.6 g at the 25 cm/min (4.17 × 10−3 m/s) pulling speed. Total estimated assay precision, including both systematic and random errors, for a hypothetical assay of 500 rods was ∼0.5%.