ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
M. L. Sundquist, J. M. Donhowe
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 140-143
Technical Note | Material | doi.org/10.13182/NT76-A31706
Articles are hosted by Taylor and Francis Online.
To observe the effect of helium and temperature on void formation in aluminum, high-purity foils were irradiated with 1.2- or 1.4-MeV Al+ ions at temperatures from 30 to 120°C, both with and without preinjected helium. Dislocation loops formed in all samples, but the samples without helium produced no voids visible in the transmission electron microscope even after doses up to 2.7 displacements per atom (dpa) (6.5 x 1015 Al+/cm2). Samples preinjected with 0.1, 1, and 10 appm helium and then irradiated at 100 and 120°C produced voids at doses of ∼0.5 dpa (1.2 x 1015 Al+/cm2). With irradiation at 75°C and below, voids formed only in samples preinjected with 0.1 appm helium. With irradiation at 100°C, the average void sizes and void densities were not significantly different for the three helium levels, whereas at 120°C the average void size decreased with increasing helium content and the density increased. With helium levels of 0.1 and 1 appm helium, varying the temperature produced an increase in void size with increasing temperature and a decrease in void density.