ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Joachim Ehrhardt
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 123-132
Technical Paper | Instrument | doi.org/10.13182/NT76-A31704
Articles are hosted by Taylor and Francis Online.
A new method for the detection of sodium boiling in liquid-metal fast breeder reactors is based on the assumption that the boiling of sodium produces fluctuations of the neutron flux within a restricted frequency range. Accordingly, a resonance-type increase in the power spectral density of neutron noise signals is observed. General criteria relating detection sensitivity, false alarm rate, and response time of a detection system are derived from theoretical considerations. Results are not dependent on the shape of the frequency spectra and are applicable to all noise signals with approximately normally distributed amplitudes. Theoretical formulas were confirmed in a number of experimental parameter studies for the optimal detection of sodium boiling. Computations based on these results predict that local and integral sodium boiling can be detected in a wide core range of the SNR 300 by observing fluctuations of the neutron flux.