ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Robert L. Fish
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 85-95
Technical Paper | Material | doi.org/10.13182/NT76-A31701
Articles are hosted by Taylor and Francis Online.
The effects of two notch geometries on the tensile properties of fast-neutron-irradiated, annealed Type 304 stainless steel were investigated. Notch strengthening was observed under test conditions that promote transgranular failure accompanied by significant ductility (>5% total elongation) as measured using an unnotched specimen. These conditions existed at room temperature and moderate fluence levels (∼3 to 6 x 1022 n/cm2, E >0.1 MeV, ∼3 to 6 x 1026 n/m2, E >16 fJ). No notch effect was observed at 450 and 700°F (505 and 644 K) at any fluence level investigated. A notch weakening may exist under test conditions promoting low ductility (<1.5% total elongation) intergranular failure. At a nominal tensile strain rate (2.67 x 10-3/min, 4.45 x 10 -5/s), notch weakening was exhibited near 1100°F (866 K) and neutron fluences above 3 x 1022 n/cm2 (3 x 1026 n/m2). At a nominal strain rate, the notch sensitivity is independent of notch geometry between radii of 0.003 and 0.030 in. (0.076 and 0.76 mm). The notch sensitivity becomes notch geometry dependent at higher strain rates due to higher ductilities associated with a transition in the deformation and failure mode.