ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
I. L. W. Wilson, F. W. Pement, R. G. Aspden, R. T. Begley
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 70-84
Technical Paper | Material | doi.org/10.13182/NT76-A31700
Articles are hosted by Taylor and Francis Online.
Stress-corrosion behavior of Type 304 stainless steel, Incoloy 800, Inconel 600, and Inconel 690 has been measured in both 10 and 50% NaOH environments. Both U-bend and C-ring samples were utilized, and test temperatures were in the range of 600 to 630°F. Differences in behavior between the two specimen configurations are attributed primarily to differences in stress level and distribution between the two types of specimens. Stress dependency of cracking of Inconel 600 and Incoloy 800 obtained on pressurized tubing samples was also measured. The total data indicate marked superiority of Inconel 600 at high stresses and high caustic concentrations. The C-ring samples of commercially prepared tubing were also exposed at 110% of the room temperature yield strength to strong (50%) mixtures of potassium and sodium hydroxides with and without admixtures of typical sludge species for prolonged periods. The general resistance to caustic cracking increased with the nickel content of the alloy; Type 304 stainless steel was the least resistant in all cases. Inconel Alloy 600 and the high-chromium-modification Inconel Alloy 690 were superior, with Incoloy 800 showing intermediate behavior. In uncontaminated caustic, only the stainless steels and Incoloy cracked in a three-month exposure, and a six-month exposure was required to produce attack in the Inconel 600. The additions of silica or silica-containing mixtures promoted attack. Low-level additions of halides or lead oxide did not enhance the caustic cracking.