ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
G. Giacchetti, C. Sari
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 62-69
Technical Paper | Fuel | doi.org/10.13182/NT76-A31699
Articles are hosted by Taylor and Francis Online.
Metallic molybdenum, Mo-Ru-Rh-Pd alloys, barium, zirconium, and tungsten have been added to uranium and uranium-plutonium oxides by coprecipitation and mechanical mixture techniques. This material has been treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U+Pu) ratio and some added elements. The result of ceramographic and microprobe analysis shows that when the overall O/(U+Pu) ratio is <2, molybdenum and Mo-Ru-Rh-Pd alloy inclusions are present in the uranium-plutonium oxide matrix. If the O/(U+Pu) ratio is >2, molybdenum oxidizes to MoO2, which is gaseous at a temperature ∼1000°C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains ∼40 wt% of actinide metals. The apparent solubility of molybdenum in uranium and uranium-plutonium oxides, determined by electron microprobe, was found to be <250 ppm both for hypo- and hyperstoichiometric fuels.