ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
David L. Chapin, William G. Price, Jr.
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 32-47
Technical Paper | Reactor | doi.org/10.13182/NT76-A31696
Articles are hosted by Taylor and Francis Online.
Since the tokamak scheme of plasma confinement provides a toroidal source of fusion neutrons,wide variations in the source distribution at the wall surface are possible. A numerical solution of the neutron streaming equation has been applied to the calculation of the flux and current as functions of wall position for a circular crosssection tokamak and two noncircular tokamaks, the Princeton Reference Design (PRD) and the University of Wisconsin UWMAK-I. The results show significant variations in the pattern of the angular flux and substantial peaking in the scalar flux and current. For example, the current peaks at 22% above nominal for the circular case, 43% for the PRD, and 12% for UWMAK-I. The nominal value, total source ÷ total area, is the commonly stated “wall load.” Effects of this magnitude cannot be ignored in future reactor designs when power densities, damage rates, etc., are evaluated.