ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
T. Roger Billeter, L. D. Blackburn
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 264-275
Technical Paper | Technique | doi.org/10.13182/NT76-A31689
Articles are hosted by Taylor and Francis Online.
Excellent sensitivity and accuracy in the measurement of deformation occurring in materials tests have been achieved with a newly developed microwave frequency sensor and instrumentation system. The strain sensor comprises a microwave cavity resonating in the circular TE113 and TM110 modes. Detection of axial strain occurs due to the changes of resonant frequency incurred by cavity length changes. Axial strain sensitivity for the TE113 mode was 6 × 10−6 per MHz, whereas radial dimensions of the cavity were related to frequency of the TM110 mode. Aperture coupling of the cavity to the end wall of Ka band waveguide provided signal excitation of the two monitored modes. Phase-locked frequency stability enabled digital count/display of resonant frequencies to within 70 kHz at 35 GHz. Room temperature tension test results demonstrated a strain measuring sensitivity (±1 × 10−6) and accuracy (±1% of the measured value) equivalent to those of electrical resistance strain gauges. The system yields accurate measurements of elastic strains as well as small departures from elastic response and hysteresis behavior during unloading and reloading. Creep test results confirm that measurement sensitivity and accuracy are retained in elevated temperature tests. Strain response on loading, subsequent creep deformation, and creep recovery after unloading can all be measured in detail. The stability of microwave sensor calibration after exposure for 22 × 106 s at temperatures from 728 to 866 K is shown to be excellent.