ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
John W. McKlveen, Michael Schwenk
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 257-263
Technical Paper | Technique | doi.org/10.13182/NT76-A31688
Articles are hosted by Taylor and Francis Online.
Thermoluminescent dosimetry (TLD) was successfully evaluated as an in-core thermal-neu-tron-flux determinant. The LiF crystals enriched with either 6Li or 7Li provided two effective neu-tron-gamma discrimination techniques. The first method used both types of crystals. The 6LiF dosimeters, which have large thermal-neutron cross sections, detected both neutrons and gamma radiation, while the 7LiF dosimeters, possessing negligible thermal-neutron attenuation characteristics, monitored the gamma component only. The dosimeters were inserted into a reactor for a known time interval and read on a commercially available detection system, and the difference in dosimeter exposure yielded a direct measure of neutron flux. The second technique used bare and cadmium-covered 7LiF dosimeters. The bare crystals detected reactor gammas, while those encapsulated in cadmium measured reactor gammas plus capture gammas from the Cd(n, γ ) reaction. The difference in exposures provided the capture-gamma contribution, which was proportional to reactor flux. Experiments using a subcritical and a TRIGA reactor revealed exposure rate to neutron flux sensitivities of 1.4 × 10−7 R/sec per ϕ and 2.6 × 10−8 R/sec per ϕ for the respective techniques. Accurate flux measurements were obtained over a range spanning 102 to 1012 n/(cm2 sec). At higher fluxes, the dosimeters experienced radiation damage and readings became unreliable. The TLD results were compared against BF3 detection, foil activation, and fission chambers to derive an empirical exposure rate to the flux conversion factor.