ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
E. E. Bloom, J. M. Leitnaker, J. O. Stiegler
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 232-243
Technical Paper | Material | doi.org/10.13182/NT76-A31685
Articles are hosted by Taylor and Francis Online.
The effects of titanium additions up to 0.6 wt% on the irradiation-induced swelling and changes in creep-rupture properties were investigated. Samples were irradiated in the Experimental Breeder Reactor II at temperatures in the range from 450 to 700°C to a maximum neutron fluence of 7.8 × 1026 n/m2 (>0.1 MeV). In annealed material, the irradiation-induced swelling exhibited a minimum in the range 0.2 to 0.4 wt% titanium. The minimum in swelling was directly attributable to a minimum in the concentration of voids. Samples irradiated in the 20% cold-worked condition exhibited slight densification at 3.0 × 1026 n/m2 (>0.1 MeV) at both 500 and 600°C. A small density decrease (0.23%) occurred during irradiation to 6.6 × 1026 n/m2 (>0.1 MeV). Postirradiation creep-rupture ductility was a maximum for alloys containing 0.23 and 0.33 wt% titanium. The observed swelling behavior in the annealed material is thought to be associated with changing amounts of titanium and carbon in solution in the austenite as the total titanium concentration is increased. The improved ductility is attributable to a decreased tendency for grain boundary crack formation and appears to be associated with removal of sulfur and possibly other impurities from solution in the austenite.