ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
H. C. Burkholder, M. O. Cloninger, D. A. Baker, G. Jansen
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 202-217
Technical Paper | Radioactive Waste | doi.org/10.13182/NT76-A31683
Articles are hosted by Taylor and Francis Online.
The safety incentives for separating and eliminating various elements from high-level radioactive waste prior to final geologic isolation have been examined. The study required evaluation of numerous parameters concerning the transport of radioactivity from the geologic isolation repository to humans. Available data were used whenever possible, but many of the study parameters had to be estimated. The values used were either consistent with current knowledge or were selected to maximize the calculated potential radiation doses. Thus, incentives for removing various elements from the waste were greatly increased. Also, incentives were greatly overestimated by neglecting all short-term risks and by assuming that elements removed from the waste could be eliminated from the earth without risk. Despite these conservative assumptions, the study found that for reasonable isolation conditions, the potential incremental radiation doses would be of the same order as or less than doses from natural sources. Although not a comprehensive evaluation or partitioning incentives, the study does show that incentives for removal of any elements, including the transurardcs, from high-level waste do not exist for the situations investigated. The methods developed for this study can be applied to evaluate any combination of waste type and geologic medium at sites that are candidates for the isolation of nuclear waste materials.