ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
H. C. Burkholder, M. O. Cloninger, D. A. Baker, G. Jansen
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 202-217
Technical Paper | Radioactive Waste | doi.org/10.13182/NT76-A31683
Articles are hosted by Taylor and Francis Online.
The safety incentives for separating and eliminating various elements from high-level radioactive waste prior to final geologic isolation have been examined. The study required evaluation of numerous parameters concerning the transport of radioactivity from the geologic isolation repository to humans. Available data were used whenever possible, but many of the study parameters had to be estimated. The values used were either consistent with current knowledge or were selected to maximize the calculated potential radiation doses. Thus, incentives for removing various elements from the waste were greatly increased. Also, incentives were greatly overestimated by neglecting all short-term risks and by assuming that elements removed from the waste could be eliminated from the earth without risk. Despite these conservative assumptions, the study found that for reasonable isolation conditions, the potential incremental radiation doses would be of the same order as or less than doses from natural sources. Although not a comprehensive evaluation or partitioning incentives, the study does show that incentives for removal of any elements, including the transurardcs, from high-level waste do not exist for the situations investigated. The methods developed for this study can be applied to evaluate any combination of waste type and geologic medium at sites that are candidates for the isolation of nuclear waste materials.