ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Cliff B. Davis
Nuclear Technology | Volume 133 | Number 2 | February 2001 | Pages 187-193
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3168
Articles are hosted by Taylor and Francis Online.
Lead-bismuth is currently being considered as a coolant for fast reactors designed to produce low-cost electricity as well as burn actinides. Lead-bismuth fluid properties have been added to the ATHENA code so that it can be used in the thermal-hydraulic analysis of lead-bismuth-cooled reactors. The capability of ATHENA to calculate the void fraction of a two-component, two-phase mixture of liquid lead-bismuth and steam in cocurrent upflow was assessed using the El-Boher and Lesin void correlation. The assessment showed that the drift flux correlations currently available in the code predicted trends that were in reasonable agreement with the El-Boher and Lesin void correlation, but the predicted void fractions were significantly too high. For example, the Kataoka-Ishii correlation, which was the best of the available correlations, predicted void fractions that were up to 30% greater than the values from the El-Boher and Lesin correlation. Consequently, the El-Boher and Lesin correlation was implemented in a modified version of ATHENA. The implementation was complicated by the fact that the El-Boher and Lesin correlation was an explicit correlation for void fraction rather than a drift flux correlation. An approach was developed so that the code's basic drift flux formulation could be used to easily implement an explicit void correlation. The predictions of the modified code were in excellent agreement with the El-Boher and Lesin void correlation.