ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
P. E. MacDonald, J. Weisman
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 357-366
Technical Paper | Fuel | doi.org/10.13182/NT76-A31672
Articles are hosted by Taylor and Francis Online.
It is postulated that typical light water reactor (LWR) fuel pellets will crack after a few power cycles and that the majority of the pellet segments will lie against the cladding. When there is a nominal cladding-to-pellet gap at operating conditions, pellet cracking will improve the fuel-to-cladding gap conductance but will reduce the fuel thermal conductivity. A model that accounts for the effects of fuel pellet cracking on both fuel conductivity and gap conductance has been formulated. Fuel centerline temperature measurements were made during the steady-state irradiation in the Halden Heavy Boiling Water Reactor of four typical LWR-type test rods with varying fuel density and pellet-to-cladding gap sizes. Calculations using the cracked pellet model were compared to the in-pile temperature measurements, and good agreement was obtained.