ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
David A. Rehbein, Roger W. Carlson
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 348-356
Technical Paper | Fuel | doi.org/10.13182/NT76-A31671
Articles are hosted by Taylor and Francis Online.
Many thermal-hydraulic computer codes employ a fuel rod heat transfer model to couple the fuel rod temperatures with the hydraulic driving forces. Frequently, these models utilize uniform thermal conductivity for the fuel to reduce computer usage and storage. To evaluate the effect of this modeling, the uniform thermal conductivity model in COBRA III was modified to incorporate temperature-dependent thermal conductivity utilizing the complete expansion of the gradient of the heat flux, including the term that represents the gradient of the thermal conductivity. Demonstrative calculations for two transients showed that the peak fuel temperatures are very dependent upon the nonuniformity of the thermal conductivity. However, the peak cladding temperatures are almost independent of modeling of the thermal conductivity of the fuel because the clad temperatures are determined by the clad properties and the total amount of heat being transferred from the fuel to the coolant. The heat transferred is proportional to the integral of the thermal conductivity, which is virtually independent of the specific dependence of the temperature dependence of the thermal conductivity. The intermediate approach that employs the correct thermal conductivity at each point in the calculation but ignores the term in the heat conduction equation that accounts for the variation in the thermal conductivity was shown to yield results that are very similar to the uniform thermal conductivity cases. It is concluded that a uniform thermal conductivity model is adequate for models that are intended for the analysis of transients where the limiting constraint is the peak cladding temperature, such as the loss-of-coolant accident. However, models that are intended for the analysis of transients where the peak fuel temperature is limiting should employ the temperature dependence of the thermal conductivity.