ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
S. R. Bierman
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 339-347
Technical Paper | Chemical Processing | doi.org/10.13182/NT76-A31670
Articles are hosted by Taylor and Francis Online.
Pulsed neutron source measurements have been made on a heterogeneous lattice of plutonium-uranium oxide fuel rods in 258 g(Pu + U)/ℓ nitrate solution containing up to 1.34 g Gd/ℓ. The experimental system on which the measurements were made is not unlike that encountered in fuel element dissolvers. The objectives of the measurements were to demonstrate the use of the pulsed neutron source technique for measuring the effectiveness of a neutron poison in reducing the reactivity of such a system and to determine the kinetic parameter β/l for these systems. Reductions in keff from unity down to 0.64 were observed upon the addition of 1.34 g Gd/ℓ to a critical system. Based on the prompt and delayed critical conditions determined for each gadolinium concentration, a continuous reduction, from $4.35/cm of solution depth down to $0.42/cm, was observed in the reactivity worth of the plutonium-uranium nitrate solution as gadolinium was added to the solution. The values of β/l as a function of gadolinium concentration was observed to vary essentially linearly from 197 to 262 sec−1 as the gadolinium concentration was increased to 1.28 g/ℓ. At the maximum gadolinium concentration of 1.34 g/ℓ, the measurements indicated a β/l value lying above this linear correlation, but not far enough above that it could not be explained by the 0.4% difference observed in the approach-to-critical and the pulsed-neutron-determined delayed critical conditions for this system. The effective delayed neutron fraction, βeff, for these mixed plutonium-uranium systems was calculated to be 0.0033 and was essentially constant over the gadolinium concentration covered. The βeff, calculational technique was subjected to an experimental-calculational verification and was found to be adequate.