ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Kostadin N. Ivanov, Tara M. Beam, Anthony J. Baratta, Ardesar Irani, Nicholas G. Trikouros
Nuclear Technology | Volume 133 | Number 2 | February 2001 | Pages 169-186
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3167
Articles are hosted by Taylor and Francis Online.
A comparison of a point-kinetics calculation and a full three-dimensional thermal-hydraulic/kinetics calculation using TRAC-PF1/NEM is presented. The coupled TRAC-PF1/NEM methodology uses version 5.4 of the TRAC-PF1/MOD2 code, developed by the Los Alamos National Laboratory, and a special kinetics module, developed at The Pennsylvania State University and based on the nodal expansion method. Cross sections are obtained from two-dimensional tables generated using CASMO-3.The results of the analysis show that the point-kinetics calculation is conservative and predicts a return to power. The three-dimensional analysis shows no return to power despite an extended overfeeding of the affected generator with feedwater. The difference is believed to be caused by the inability of the standard point-kinetics method to properly account for the moderator density feedback, local effects, and flux redistribution, which occur during the transient.